Math 115 Fall 2017 Lecture 16

Ch. 4
Exponential Rules:

1) $x^{n}=\underbrace{x \cdot x \cdot x \cdot x \cdots x}_{n \text { times }}$
2) $x^{1}=x$
3) $x^{0}=1 ; x \neq 0$
4) $x^{m} \cdot x^{n}=x^{m+n}$
5) $\left(x^{m}\right)^{n}=x^{m \cdot n}$
6) $(x y)^{n}=x^{n} y^{n}$
7) $\frac{x^{m}}{x^{n}}=x^{m-n}$
8) $\left(\frac{x}{y}\right)^{n}=\frac{x^{n}}{y^{n}}$
9) $x^{-n}=\frac{1}{x^{n}}$
10) $\frac{x^{-n}}{y^{-m}}=\frac{y^{m}}{x^{n}}$
${ }_{11}\left(\frac{x}{y}\right)^{-n}=\left(\frac{y}{x}\right)^{n}$

Simplify:

$$
\begin{aligned}
& 5^{1}-10^{0}=5-1=4 \\
& \left(\frac{-3}{4}\right)^{0}-\left(\frac{1}{2}\right)^{-1}=1-\left(\frac{2}{1}\right)^{1}=1-2^{1} \\
& =1-2=-1
\end{aligned}
$$

Expand: $\left(-3 x^{2}\right)^{4}=\underbrace{\left(-3 x^{2}\right) \cdot\left(-3 x^{2}\right) \cdot\left(-3 x^{2}\right) \cdot\left(-3 x^{2}\right)}_{4 \text { times }}$
Write using exponent:

$$
\begin{aligned}
& \text { rite using exponent: } \\
& \frac{4}{x} \cdot \frac{4}{x} \cdot \frac{4}{x} \cdot \frac{4}{x} \cdot \frac{4}{x}=\left(\frac{4}{x}\right)^{5}
\end{aligned}
$$

Simplify:

1) $x^{8} \cdot x^{10}=x^{8+10}$
2) $\left(x^{8}\right)^{10}=x^{8 \cdot 10}$

$$
=x^{18}
$$

$$
=x^{80}
$$

3) $\left(x^{7}\right)^{3} \cdot x^{9}$
4) $\left(x^{10}\right)^{2} \cdot\left(x^{5}\right)^{4}$

$$
\begin{aligned}
& =x^{7 \cdot 3} \cdot x^{9} \\
& =x^{21} \cdot x^{9}=x^{30}
\end{aligned}
$$

$$
\begin{aligned}
& =x^{20} \cdot x^{20} \\
& =x^{40}
\end{aligned}
$$

5) $\left(-5 x^{6}\right)^{3}=(-5)^{3}\left(x^{6}\right)^{3}$
6) $\left(2 x^{8} y^{3}\right)^{4}$

$$
=-125 x^{18}
$$

$$
\begin{aligned}
& =2^{4}\left(x^{8}\right)^{4}\left(y^{3}\right)^{4} \\
& =16 x^{32} y^{12}
\end{aligned}
$$

7) $\frac{x^{12}}{x^{3}}=x^{12-3}$

$$
=x^{9}
$$

8) $\frac{\left(x^{6}\right)^{4}}{\left(x^{3}\right)^{5}}$

$$
=\frac{x^{24}}{x^{15}}
$$

$$
=x^{24-15}=x^{9}
$$

Simplify (No negative exponent)

1) $x^{-4}=\frac{1}{x^{4}}$
2) $3^{-1}=\frac{1}{3^{1}}=\frac{1}{3}$
3) $\left(x^{-2}\right)^{5}=x^{-10}$

$$
=\frac{1}{x^{10}}
$$

$$
\text { 4) } \begin{aligned}
& \left(x^{-3}\right)^{-4} \cdot x^{-13} \\
= & x^{12} \cdot x^{-13} \\
= & x^{-1}=\frac{1}{x^{1}}=\frac{1}{x}
\end{aligned}
$$

Simplify

1) $\left(\frac{3 x}{y^{4}}\right)^{2}$
2) $\left(\frac{x^{3}}{2 y^{5}}\right)^{-3}=\left(\frac{2 y^{5}}{x^{3}}\right)^{3}$

$$
=\frac{3^{2} x^{2}}{\left(y^{4}\right)^{2}}=\frac{9 x^{2}}{y^{8}}
$$

$$
\begin{aligned}
& =\frac{2^{3}\left(y^{5}\right)^{3}}{\left(x^{3}\right)^{3}} \\
& =\frac{8 y^{15}}{x^{9}}
\end{aligned}
$$

Simplify

$$
\frac{-2^{3} 4 x^{12} y^{18}}{\frac{16 x^{10} y^{8}}{2}}=-\frac{3 x^{2} y^{10}}{2}
$$

$$
\begin{aligned}
& x^{12-10}=x^{2} \\
& y^{18-8}=y^{10}
\end{aligned}
$$

Reduce by 8

$$
=-\frac{3}{2} x^{2} y^{10}
$$

Simplify

$$
\frac{-50 x^{12} y^{-6}}{15 x^{-8} y^{10}}=\frac{-50 x^{12} x^{8}}{\frac{15}{3} y^{10} y^{6}}=\frac{-10 x^{20}}{3 y^{16}}
$$

A monomial without any variable is Called constant. Constant has degree O.
$85 \rightarrow$ Monomial \rightarrow Constant \rightarrow Deg. $=0$

Monomial	Coef.	Degree
$25 x^{6}$	25	6
$-32 x y$	-32	$1+1=2$
$123 x y^{2} z^{3}$	123	$1+2+3=6$
100	Constant	0

Binomial: t or - of two monomials

$$
\begin{gathered}
4 x^{2}+10,-3 x-8, \quad x^{4} y^{2}-x^{2} y^{4} \\
\frac{2}{3} x-\frac{3}{5} y, \quad x^{2} y^{3} z^{5}+x y z
\end{gathered}
$$

Deg. is the highest degree of the monomials. Coff. of that monomial is called the leading Coff.

$$
\begin{array}{ll}
3 x^{10}-20 x^{2} & \text { Deg. }=10 \\
\text { L.C. }=3
\end{array}
$$

$$
\begin{array}{ll}
4 x^{3} y^{7}-12 x^{8} y^{5} \\
D=10 & D=13 \\
C=4 & C=-12
\end{array} \quad \text { L.C. }=-12
$$

Monomial	D	C
$4 x^{3} y^{7}$	10	4
$-12 x^{8} y^{5}$	13	-12
$D=13$		

$$
\text { LC. }=-12
$$

find $D \dot{\varepsilon} C$ of each monomial, then give $D \dot{\varepsilon} L . C$. of the binomial

$$
\begin{aligned}
& 24 x^{6} y^{3}-400 x y \\
& D=9 \\
& \text { L.C. } 24
\end{aligned}
$$

Trinomial: + or - of three monomials

$$
\begin{aligned}
& x^{x^{20}-5 x+7 \Rightarrow D=2}, L . C .=1 \text {, constan } \\
& 4 x^{3}+12 x^{2}-100 x \Rightarrow D=3, L . C .=4 \text {, No }
\end{aligned}
$$ constant

$$
\left\{\left.\begin{array}{l}
x^{6} y^{5}-15 x^{3} y^{7}+x y \\
\begin{array}{l}
\text { Deg. } 11 \\
L_{0}=1
\end{array} \\
\begin{array}{c}
\text { Monomials }
\end{array} \\
\begin{array}{c}
x^{6} y^{5} \\
11
\end{array} \\
\hline-15 x^{3} y^{7} \\
x y
\end{array} \right\rvert\, \begin{array}{c}
10 \\
\hline
\end{array}\right.
$$

Monomial, binomial, trinomial are Special polynomials.
Polynomial: + or - of monomials $7 x^{4}-12 x^{3}+25 x^{2}-45$

$$
\begin{gathered}
D=4, \quad \text { L.C. }=7, \quad \text { Const }=-45 \\
12 x^{4} y^{2}-10 x^{6} y^{3}+\frac{2}{3} x^{8} y^{5}+x y+1 \\
D=6 \quad D=13 \quad D=0 \\
D=13, \text { L.C. }=\frac{2}{3}, \text { Constant }=1
\end{gathered}
$$

Simplify

$$
\begin{aligned}
&\left(4 x^{5}\right)\left(12 x^{3}\right)=\underbrace{4 \cdot 12} \cdot x^{5} \cdot x^{3} \\
&=48 x^{8} \quad \begin{array}{l}
\text { Monomial } \\
D
\end{array} \\
& \frac{C=48}{C}=4 x^{12} y^{8} \\
& \frac{-60 x^{3} y^{7}}{}=-12 x^{9} y^{1}=-12 x^{9} y \\
& \begin{array}{l}
\text { Monomial } \\
D=9+1=10, C=-12
\end{array}
\end{aligned}
$$

Find the area	$A=L W$
$A=L W$	
$10 x^{3} y^{6} \quad$	$=\left(10 x^{3} y^{6}\right)\left(4 x^{2} y^{4}\right)$
	$=10 \cdot 4 x^{3} x^{2} y^{6} y^{4}$
	$=40 x^{5} y^{10}$
Monomial	
$D=15$, Coff. 40

find the Volume

$$
\begin{aligned}
V & =S^{3} \\
V & =\left(2 x^{6}\right) \\
& =2^{3}\left(x^{6}\right)^{3}
\end{aligned}
$$

$$
2 x^{6} \quad V=\left(2 x^{6}\right)^{3}
$$

$$
\left\{\begin{array}{l}
\text { Monomial } \\
D=18 \\
C=8
\end{array}\right.
$$

Recall $a(b+c)=a b+a c$ Distributive Prop.

$$
\begin{aligned}
& 2(x+3)=2 x+6 \\
&-3\left(4 x^{2}-5\right)=-12 x+15 \\
& 5\left(2 x^{2}-3 x+1\right)=10 x^{2}-15 x+5 \\
& 4 x\left(3 x^{-2}-2\right)=4 x \cdot 3 x-4 x \cdot 2 \\
&=12 x^{2}-8 x
\end{aligned}
$$

$$
\begin{aligned}
& 3 x^{2}\left(4 x^{2}-5 x^{4}+6\right) \\
= & 3 x^{2} \cdot 4 x^{2}-3 x^{2} \cdot 5 x+3 x^{2} \cdot 6 \\
= & 12 x^{4}-15 x^{3}+18 x^{2} \\
& 4 x^{3}\left(5 x^{2}-4 x+1\right) \\
= & 4 x^{3} \cdot 5 x^{2}-4 x^{3} \cdot 4 x+4 x^{3} \cdot 1 \\
= & 20 x^{5}-16 x^{4}+4 x^{3} \quad \begin{array}{l}
\text { Trinomial } \\
\text { D }=5 \\
\text { L.C. }=20
\end{array}
\end{aligned}
$$

find the area

$$
3 x^{2}-x+4
$$

$$
5 x^{2}
$$

$$
\begin{gathered}
A=L W \\
A=5 x^{2}\left(3 x^{2}-x+4\right) \\
=5 x^{2} \cdot 3 x^{2}-5 x^{2} \cdot x+5 x^{2} \cdot 4 \\
A=15 x^{4}-5 x^{3}+20 x^{2}
\end{gathered}
$$

Trinomial

$$
D=4, \text { L.C. }=15
$$

No constant.

FOIL Method
\rightarrow Last ones Inside ones
\rightarrow outside ones
\rightarrow first ones
Multiply $(x+5)(x+2)=$
Trinomial $\quad x^{2}+2 x+5 x+10=$
$D=2$
LC. $=1$

$$
x^{2}+7 x+10
$$

Constant $=10$

Multiply by using FOIL method:

$$
\begin{aligned}
& (2 x+4)\left(3 x \frac{0}{5} 5\right) \\
& =2 x \cdot 3 x-2 x \cdot 5+4 \cdot 3 x-4 \cdot 5 \\
& =6 x^{2}-10 x+12 x-20 \\
& =6 x^{2}+2 x-20 \quad \begin{array}{l}
\text { Trinomial } \\
D=2 \\
\text { L.C. }=6 \\
\text { Constant }=-20
\end{array}
\end{aligned}
$$

Multiply

$$
\begin{aligned}
& (5 x-3)^{0}\left(4 x-\frac{0}{4}\right) \\
= & 5 x \cdot 4 x-5 x \cdot 5-3.4 x+3 \cdot 5 \\
= & 20 x^{2}-25 x-12 x+15 \\
= & 20 x^{2}-37 x+15 \\
\text { Trinomial } & \begin{array}{l}
D=2, L \cdot C=20 \\
\text { Const. } 15
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \underbrace{\text { Multiply }}_{\text {Conjugates }} \begin{array}{l}
\underbrace{5 x+5 x-5 x-6}_{5+6)(5}+6.5 x-6.6 \\
\quad=25 x^{2}-30 x+30 x-36 \\
\quad=25 x^{2}-36
\end{array}
\end{aligned}
$$

find the area

$$
\frac{7 x+3}{7 x-3}
$$

$$
\begin{aligned}
A & =L W \\
& =\underbrace{(7 x+3)(7 x-3)}_{\text {Conjugates }} \\
& =49 x^{2}-2 \pm x+2 \pm x-9 \\
& =49 x^{2}-9
\end{aligned}
$$

USe FOIL method to multiply

$$
\begin{aligned}
& \left(x^{1}+3\right)\left(x^{2}-3 x+9\right) \\
& =x^{3}-3 x^{2}+9 x+3 x^{2}-9 x+27 \\
& =x^{3}+27 \quad \text { binomial } \quad D=3 \quad \text { L.C. } 1
\end{aligned}
$$

find the anew

$$
\begin{gathered}
A=L W \\
A=(2 x-5)\left(4 x^{2}+10 x+25\right) \\
=8 x^{3}+20 x^{2}+50 x \\
-20 x^{2}-50 x-125 \\
=8 x^{3}-125 \\
\text { Binomial } \\
D=3, \text { L.C. } 8 \\
\text { Const }-125
\end{gathered}
$$

