

Ch.4

Exponential Rules:

1)
$$\chi^{\eta} = \underbrace{\chi \cdot \chi \cdot \chi \cdot \chi \cdot \chi \cdot \chi}_{\eta \text{ times}}$$
 2) $\chi^{1} = \chi$

$$2) \chi = \chi$$

3)
$$\chi^0 = 1$$
; χ_{+0}

$$4) \chi^{\mathbf{m}} \cdot \chi^{\mathbf{n}} = \chi^{\mathbf{m} + \mathbf{n}}$$

$$5)(x^{m})^{\eta} = x^{m \cdot \eta}$$

6)
$$(\chi y)^n = \chi^n y^n$$

8)
$$\left(\frac{\lambda}{x}\right)_{y} = \frac{\lambda_{y}}{x_{y}}$$

9)
$$\chi^{-\eta} = \frac{1}{\chi^{\eta}}$$

7)
$$\frac{\chi^{M}}{\chi^{N}} = \chi^{M-N}$$
 8) $\left(\frac{\chi}{2}\right)^{N} = \frac{\chi^{N}}{2}$
9) $\chi^{-N} = \frac{1}{\chi^{N}}$ 10) $\frac{\chi^{-N}}{2} = \frac{\chi^{M}}{2}$ 11) $\left(\frac{\chi}{2}\right)^{N} = \left(\frac{\chi}{2}\right)^{N}$

Simplify:

$$5^{1} - 10^{0} = 5 - 1 = 4$$

$$\left(\frac{-3}{4}\right)^{0} - \left(\frac{1}{2}\right)^{1} = 1 - \left(\frac{2}{1}\right)^{1} = 1 - 2^{1}$$

$$= 1 - 2 = -1$$
Expand: $(-3\chi^{2})^{1} = (-3\chi^{2}) \cdot (-3\chi^{2}) \cdot (-3\chi^{2}) \cdot (-3\chi^{2})$

write using exponent:
$$\frac{4}{x} \cdot \frac{4}{x} \cdot \frac{4}{x} \cdot \frac{4}{x} \cdot \frac{4}{x} = \left(\frac{4}{x}\right)$$

Simplify:
1)
$$\chi^8 \cdot \chi^{10} = \chi^{8+10}$$

3)
$$(\chi^7)^3 \cdot \chi^9$$

$$= \chi^{3} \cdot \chi^9 = \chi^{30}$$

$$= \chi^{21} \cdot \chi^9 = \chi^{30}$$

2)
$$(\chi_8)_{10} = \chi_{8.10}$$

4)
$$(\chi^{10}) \cdot (\chi^{5})^{4}$$

= $\chi^{20} \cdot \chi^{20}$
= χ^{40}

5)
$$(-5\chi^6)^3 = (-5)^3 (\chi^6)^3$$

= $[-125\chi^{18}]$

1)
$$\frac{\chi^{12}}{\chi^3} = \chi^{12-3}$$

6)
$$(2x^{8}y^{3})^{4}$$

$$= 2^{4}(x^{8})^{4}(y^{3})^{4}$$

$$= 16 x^{32} y^{12}$$

$$= (x^{6})$$

$$= (x^{3})^{5}$$

$$= \chi^{24}$$

$$= \chi^{15}$$

$$= \chi^{9}$$

Simplify (No negative exponent)

1)
$$\chi^{-4} = \sqrt{\frac{1}{\chi^4}}$$

2)
$$3^{-1} = \frac{1}{3^{1}} = \frac{1}{3}$$

1)
$$\chi^{-4} = \frac{1}{\chi^{4}}$$

3) $(\chi^{-2})^{5} = \chi^{-10}$
 $= \frac{1}{\chi^{10}}$

4)
$$(\chi^{-3})^{-4} \cdot \chi^{-13}$$

$$= \chi^{12} \cdot \chi^{-13}$$

$$= \chi^{-1} = \frac{1}{\chi^{1}} = \frac{1}{\chi}$$

Simplify

1)
$$\left(\frac{3x}{y^{4}}\right)^{2}$$

2) $\left(\frac{x^{3}}{2y^{5}}\right)^{-3} = \left(\frac{2y^{5}}{x^{3}}\right)^{3}$

$$= \frac{3^{2}x^{2}}{(y^{4})^{2}} = \frac{9x^{2}}{y^{8}}$$

$$= \frac{2^{3}(y^{5})^{3}}{(x^{3})^{3}}$$

$$= \frac{8y^{15}}{x^{9}}$$

Simplify
$$\frac{3}{2}x^{12}y^{18} = \frac{3}{2}x^{2}y^{10}$$
Reduce
by 8
$$= \frac{3}{2}x^{2}y^{10}$$
Simplify
$$-50 x^{12}y^{-6} = \frac{3}{2}x^{2}y^{10}$$
15 $x^{-8}y^{10} = \frac{10}{3}x^{12}x^{8} = \frac{10}{3}x^{20}$

A monomial without any variable is		
Called constant. Constant has degree O.		
85 -> Monomial -> constant -> Deg.=0		
Monomial	Coef.	Degree
25 x 6	25	6
-3224	-32	1+1=2
1232423	123	1+2+3 = 6
100	Constant	0

Binomial! + or - of two monomials

$$4\chi^2 + 10$$
, $-3\chi - 8$, $\chi^4 y^2 - \chi^2 y^4$
 $\frac{2}{3}\chi - \frac{3}{5}y$, $\chi^2 y^3 z^5 + \chi y z$

Deg. is the highest degree of the monomials.

Coef. of that monomial is called the leading Coef.

 $3\chi^{10} - 20\chi^2$

Deg. = 10

L.C. = 3

$$4x^{3}y^{7} - 12x^{8}y^{5} \implies Deg. = 13$$

$$D = 10 \qquad D = 13$$

$$C = 4 \qquad C = -12$$

$$4x^{3}y^{7} \qquad 10 \qquad 4$$

$$-12x^{5}y^{5} \qquad 13 \qquad 12$$

$$D = 13$$

$$L.C. = -12$$

Sind
$$D \in C$$
 of each monomial, then

give $D \in L.C.$ of the binomial

 $24 \times 6y^3 - 400 \times y \quad \underline{\text{Nm.}} \quad D \mid C$
 $24x^6y^3 = 9$
 24

Trinomial: + or - of three monomials
$$2^{20} - 5x + 7 \Rightarrow D=2, L.C.=1, constant=7$$

$$4x^{3} + 12x^{2} - 100x \Rightarrow D=3, L.C.=4, NO constant$$

$$x^{6}y^{5} - 15x^{3}y^{7} + xy$$
Monomials D C
$$x^{6}y^{5} - 11 = 1$$

$$L.C. = 1 - 15x^{3}y^{7} + 2y = 10$$

$$x^{6}y^{5} - 15x^{2}y^{7} + 2y = 10$$

Monomial, binomial, trinomial are

Special Polynomials.

Polynomial: + or - of monomials $7x^4 - 12x^3 + 25x^2 - 45$ D=4, L.C.=7, Const.=-45 $12x^4y^2 - 10x^6y^3 + 2x^8y^5 + xy + 1$ D=6 D=9 D=13 D=2 D=13 D=2 D=3 D=3

Simplify
$$(4x^{5})(2x^{3}) = 4 \cdot 12 \cdot x^{5} \cdot x^{3}$$

$$= 48 x^{8} \qquad \text{Monomial}$$

$$D = 8$$

$$C = 48$$

$$-60 x^{12} y^{8}$$

$$= -12x^{9}y^{1} = -12x^{9}y$$

$$= -12x^{9}y$$
Monomial
$$D = 9 + 1 = 10 , C = -12$$

Find the area
$$A = LW$$

$$A = LW$$

$$4x^2y^4$$

$$= 10.4x^3x^2y^6y^7$$

$$= 40x^5y^{10}$$
Monomial
$$D = 15$$

$$(0ef. 40)$$

Recall
$$0(b+c) = 0b + 0c$$

Distributive Prop.
 $2(x+3) = 2x + 6$
 $-3(4x-5) = -12x + 15$
 $5(2x^2-3x+1) = 10x^2 - 15x + 5$
 $4x(3x-2) = 4x \cdot 3x - 4x \cdot 2$
 $= 12x^2 - 8x$

$$3x^{2}(4x^{2} - 5x + 6)$$

$$= 3x^{2} \cdot 4x^{2} - 3x^{2} \cdot 5x + 3x^{2} \cdot 6$$

$$= 12x^{4} - 15x^{3} + 18x^{2}$$

$$4x^{3}(5x^{2} - 4x + 1)$$

$$= 4x^{3} \cdot 5x^{2} - 4x^{3} \cdot 4x + 4x^{3} \cdot 1$$

$$= 20x^{5} - 16x^{4} + 4x^{3} \quad 0 = 5$$

$$= 20x^{5} - 16x^{4} + 4x^{3} \quad 0 = 5$$

$$= 20x^{5} - 16x^{4} + 4x^{3} \quad 0 = 5$$

$$= 20x^{5} - 16x^{4} + 4x^{3} \quad 0 = 5$$

Find the area
$$A = LW$$

$$A = 5\chi^{2}(3\chi^{2} - \chi + 4)$$

$$= 5\chi^{2} \cdot 3\chi^{2} - 5\chi^{2} \cdot \chi + 5\chi^{2} \cdot 4$$

$$= 5\chi^{2} \cdot 3\chi^{2} - 5\chi^{2} \cdot \chi + 5\chi^{2} \cdot 4$$

$$= 5\chi^{2} \cdot 3\chi^{2} - 5\chi^{2} \cdot \chi + 5\chi^{2} \cdot 4$$

$$= 5\chi^{2} \cdot 3\chi^{2} - 5\chi^{2} \cdot \chi + 5\chi^{2} \cdot 4$$

$$= 5\chi^{2} \cdot 3\chi^{2} - 5\chi^{2} \cdot \chi + 5\chi^{2} \cdot 4$$

$$= 5\chi^{2} \cdot 3\chi^{2} - 5\chi^{2} \cdot \chi + 5\chi^{2} \cdot 4$$

$$= 5\chi^{2} \cdot 3\chi^{2} - 5\chi^{2} \cdot \chi + 5\chi^{2} \cdot 4$$

$$= 5\chi^{2} \cdot 3\chi^{2} - 5\chi^{2} \cdot \chi + 5\chi^{2} \cdot 4$$

$$= 5\chi^{2} \cdot 3\chi^{2} - 5\chi^{2} \cdot \chi + 5\chi^{2} \cdot 4$$

$$= 5\chi^{2} \cdot 3\chi^{2} - 5\chi^{2} \cdot \chi + 5\chi^{2} \cdot 4$$

$$= 5\chi^{2} \cdot 3\chi^{2} - 5\chi^{2} \cdot \chi + 5\chi^{2} \cdot 4$$

$$= 5\chi^{2} \cdot 3\chi^{2} - 5\chi^{2} \cdot \chi + 5\chi^{2} \cdot 4$$

$$= 5\chi^{2} \cdot 3\chi^{2} - 5\chi^{2} \cdot \chi + 5\chi^{2} \cdot 4$$

$$= 5\chi^{2} \cdot 3\chi^{2} - 5\chi^{2} \cdot \chi + 5\chi^{2} \cdot 4$$

$$= 5\chi^{2} \cdot 3\chi^{2} - 5\chi^{2} \cdot \chi + 5\chi^{2} \cdot 4$$

$$= 5\chi^{2} \cdot 3\chi^{2} - 5\chi^{2} \cdot \chi + 5\chi^{2} \cdot 4$$

$$= 5\chi^{2} \cdot 3\chi^{2} - 5\chi^{2} \cdot \chi + 5\chi^{2} \cdot 4$$

$$= 5\chi^{2} \cdot 3\chi^{2} - 5\chi^{2} \cdot \chi + 5\chi^{2} \cdot 4$$

$$= 5\chi^{2} \cdot 3\chi^{2} - 5\chi^{2} \cdot \chi + 5\chi^{2} \cdot 4$$

$$= 5\chi^{2} \cdot 3\chi^{2} - 5\chi^{2} \cdot \chi + 5\chi^{2} \cdot 4$$

$$= 5\chi^{2} \cdot 3\chi^{2} - 5\chi^{2} \cdot \chi + 5\chi^{2} \cdot \chi +$$

Multiply by using FOIL method:

$$(2x +4)(3x-5)$$

$$= 2x \cdot 3x - 2x \cdot 5 + 4 \cdot 3x - 4 \cdot 5$$

$$= 6x^{2} - 10x + 12x - 20$$

$$= 6x^{2} + 2x - 20$$
Trinomial
$$D = 2$$

$$L.C. = 6$$
Constant = -20

Multiply
$$(5x - 3)(4x = 5)$$

$$= 5x \cdot 4x - 5x \cdot 5 - 3 \cdot 4x + 3 \cdot 5$$

$$= 20x^{2} - 25x - 12x + 15$$

$$= 20x^{2} - 37x + 15$$
Const. 15
Trinomial

Multiply
$$(5x + 6)(5x - 6)$$
Conjugates
$$= 5x \cdot 5x - 5x \cdot 6 + 6 \cdot 5x - 6 \cdot 6$$

$$= 25x^{2} - 30x + 30x - 36$$

$$= 25x^{2} - 36$$

Find the area
$$A = LW$$

$$= (7x+3)(7x-3)$$

Use FOIL method to multiply
$$(\chi^{1}+3)(\chi^{2}-3\chi+9)$$

$$=\chi^{3}-3\chi^{2}+9\chi+3\chi^{2}-9\chi+27$$

$$=\chi^{3}+27$$
 binomial D=3 L.C.1
const 27

Find the area
$$A = LW$$

$$A = (2x-5)(4x^2 + 10x + 25)$$

$$-8x^3 + 20x^2 + 50x$$

$$-20x^2 - 50x - 125$$

$$-8x^3 - 125$$
Binomial
$$D = 3, L.C. 8$$

$$Const - 125$$